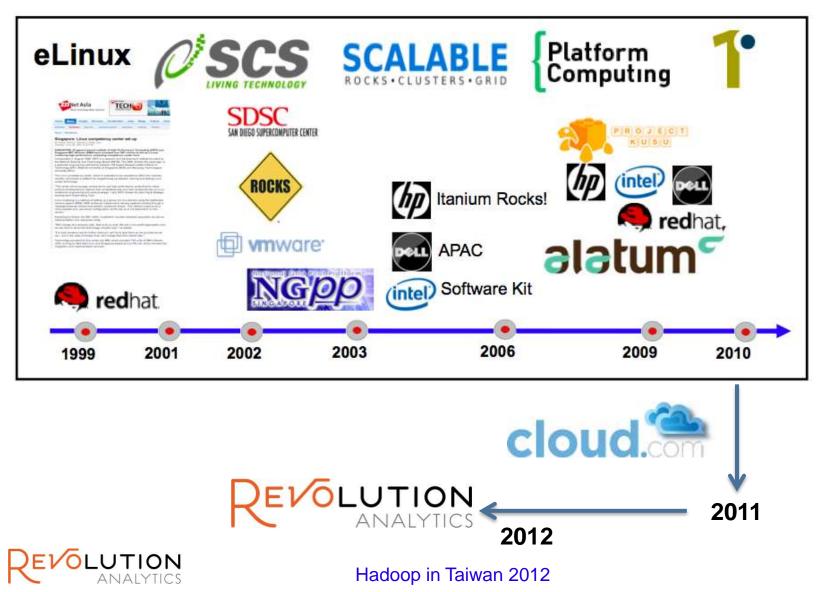

Laurence Liew General Manager, APAC Revolution Analytics laurence.liew @ revolutionanalytics.com | +65 9029 4312

Big Data Analytics with R

A Hadoop and HPC Cluster Perspective


Laurence Liew General Manager, APAC Revolution Analytics laurence.liew @ revolutionanalytics.com | +65 9029 4312

Agenda

- Introduction
- What is Big Data and Why Big Data?
- Why R?
- High Performance Analytics on Big Data with HPC Clusters and R
- High Performance Analytics on Big Data with Hadoop Clusters and R
- Enterprise Deployment of Big Data Analytics
- Technical Walk-thru and demos

Background

Corporate Overview & Quick Facts

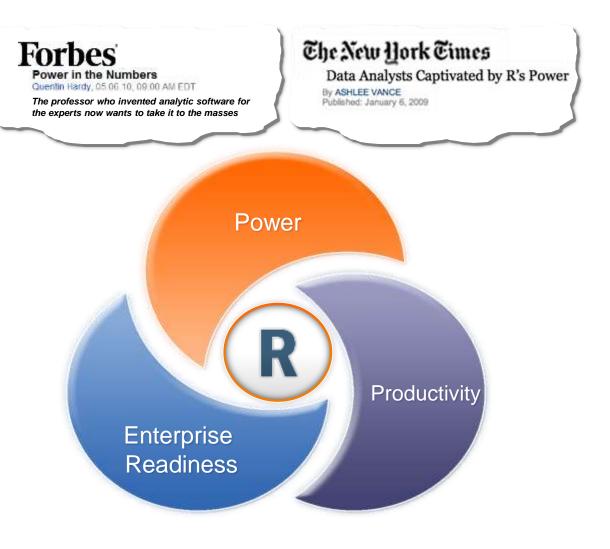
"Revolution Analytics is the leading commercial provider of software and support for the open-source R statistical computing language."

Founded	2008 (as REvolution Computing)	Number of Employees Number of customers	40+ 100+
Office Locations	Palo Alto (HQ), Seattle (Eng), Singapore	Investors	Northbridge Venture Partners, Intel Capital, Presidio Ventures
CEO	David Rich		

150+ Corporate Customers and growing

Revolution Analytics

OPEN SOURCE ANALYTICS FOR THE ENTERPRISE

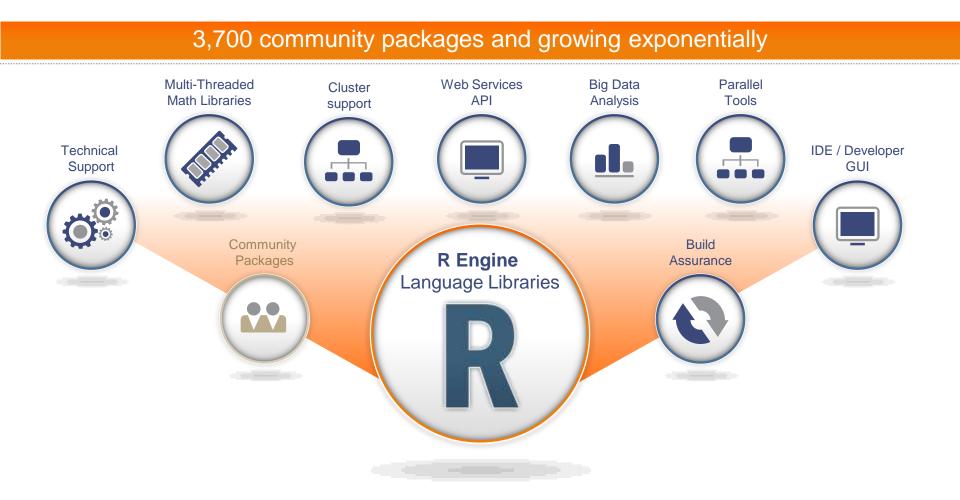

→Most advanced statistical analysis software available

Half the cost of commercial alternatives

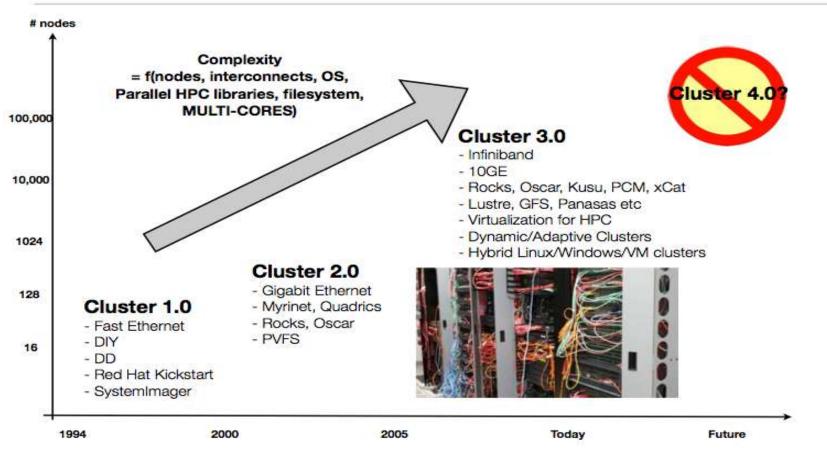
→2M+ Users

→2,500+ Applications

Statistics	Finance
Otatistics	Life Sciences
Predictive	Manufacturing
Analytics	Retail
Data Mining	Telecom
Visualization	Social Media
visualization	Government


MERCK EQUIFAX A CITI VISA JIGT

Revolution R Enterprise has Open-Source R Engine at the core


Revolution Confidential

WHAT IS BIG DATA AND WHY BIG DATA?

Before Cloud and Hadoop

HPC Cluster History & Timeline

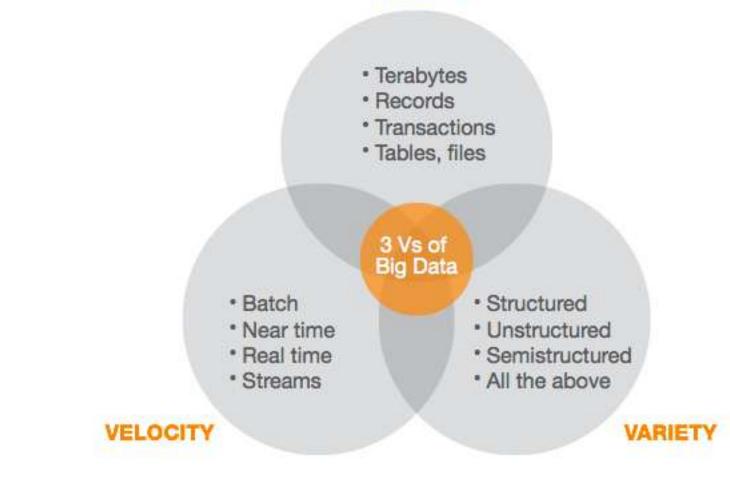
Hadoop in Taiwan 2012

Big Data and Analytics

Big Data

- Concepts of distributing data (Hadoop) for processing is not new
 - PVFS, Lustre
 - Manual BLAST
- Analytics
 - A fancier name for Statistics???
 - Predictive analytics?
 - Neural networks? 1980s…

Analytics = statistics + big data (social media)


What is **Big Data**

- "Big data" is data that becomes large enough that it cannot be processed using conventional methods..
 - BigData = f (Volume, Velocity, Variety)
- Creators of web search engines were among the first to confront this problem??
 - I beg to differ Mapping of Human Genome in mid 2000s was the first to grapple with "big data"
- Today, social networks, mobile phones, sensors and science contribute to petabytes of data created daily.

Big Data

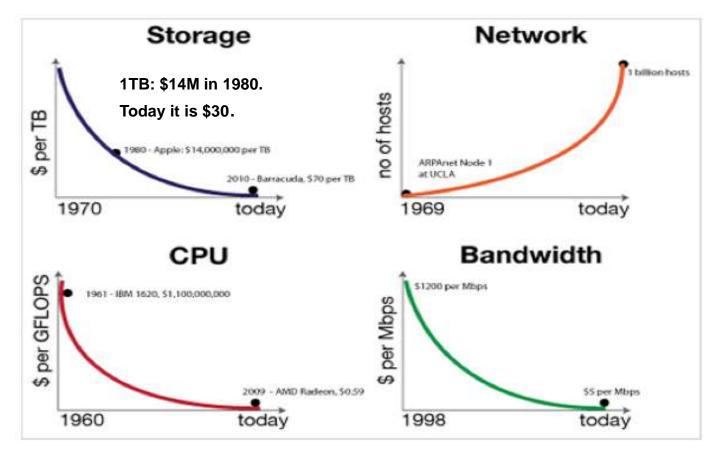
VOLUME

Analytics

- predictive analytics
- data mining
- statistical analysis
- complex SQL.
- data visualization
- artificial intelligence
- natural language processing
- database capabilities that support analytics
 - MapReduce
 - in-database analytics
 - in-memory databases
 - columnar data stores

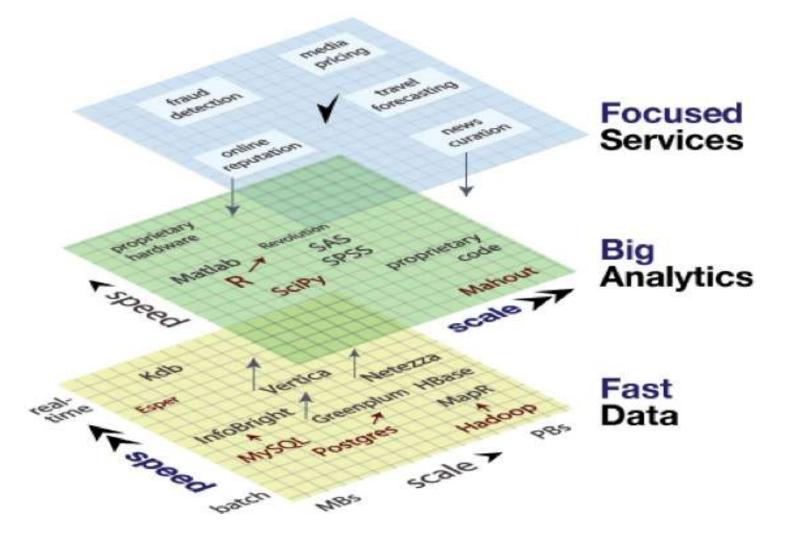
Predict Vs Discover **Revolution Confidential**

Analytics now and some best practice



Why Big Data Analytics?

- No more sampling
- Availability of tools such as Hadoop and R
- Economics (see chart later)
- Messy data is good as long as it's big
 - You want to know the outliers (fraud?)
 - Don't strip and clean the data
- Big Data + Analytics -> company assets with actionable business insights
 - Today it is unforgiveable to sit on data and not act on it
 - Data is treated as a perishable a good


Economics: Attack of the Exponentials

Migration to the cloud is the manifest destiny for big data, and the cloud is the launching pad for data startups.

The Emerging Big Data Stack

The R Project

Data Analysis and Statistical Graphics for the Enterprise

Hadoop in Taiwan 2012

What is R?

- Data analysis software
- A programming language
 - Development platform designed by and for statisticians
- An environment
 - Huge library of algorithms for data access, data manipulation, analysis and graphics
- An open-source software project
 - Free, open, and active
- A community
 - Thousands of contributors, 2 million users

Hadoop in Taiwan 2012

Resources and help in every domain

Download the White Paper <u>**R** is Hot</u> bit.ly/r-is-hot

R Code to Create MrBrown's WordCloud

insisting Say titanic against phone ipads buy gahmen defying same taking they 500000 music of banned submit Car E parkway about opens taufin % costumes DUDIC hdb taufic 🖁 face mths sbs our Enote you 84600 price galaxy singaporeanstig who cue but sengkang will through uniqlo too spells facebook parade when jua 100 b making saletopgearsingapore proposal gravity [™]via killed photos get how yalenus SOME btogantries gt1600cc antiatest twoworryingtr obscene wicked sai pay peop

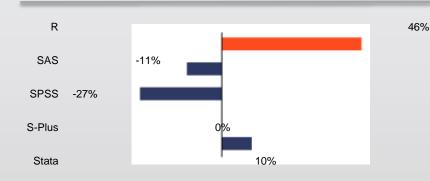
require(twitteR) require(tm)

mrbrown.tweets <- searchTwitter('@mrbrown', n=1500) text <- laply(mrbrown.tweets, function(t) t\$getText()) text.corpus <- Corpus(VectorSource(text))

text.corpus <- tm_map(text.corpus, removePunctuation)
text.corpus <- tm_map(text.corpus, tolower)
text.corpus <- tm_map(text.corpus, removeWords,
c('mrbrown','english','the','with','and'))</pre>

tdm <- TermDocumentMatrix(text.corpus)
m <- as.matrix(tdm)
v <- sort(rowSums(m),decreasing=TRUE)
d <- data.frame(word = names(v),freq=v)</pre>

wordcloud(d\$word,d\$freq,c(3,.3),50,150,T,.15)



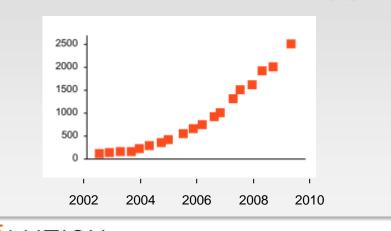
Hadoop in Taiwan 2012

R is exploding in popularity and functionality

Scholarly Activity

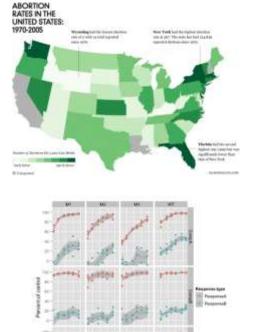
Google Scholar hits ('05-'09 CAGR)

"I've been astonished by the rate at which R has been adopted. Four years ago, everyone in my economics department [at the University of Chicago] was using Stata; now, as far as I can tell, R is the standard tool, and students learn it first."


Deputy Editor for New Products at Forbes

"A key benefit of R is that it provides nearinstant availability of new and experimental methods created by its user base — without waiting for the development/release cycle of commercial software. SAS recognizes the value of R to our customer base..."

Product Marketing Manager SAS Institute, Inc


Package Growth

Number of R packages listed on CRAN

Hadoop in Taiwan 2012

Graphics and Data Visualization

Contractation

- Functions for standard graphs
 - Scatterplot, time series, histogram, smoothing, …
 - Bar plot, pie chart, dot chart, ...
 - Image plot, 3-D surface, map, …
- Influences from Cleveland, Tufte etc.
 - Conditioning, small multiples, use of color
- Customize without limits
 - Combine graph types
 - Create entirely new graphics

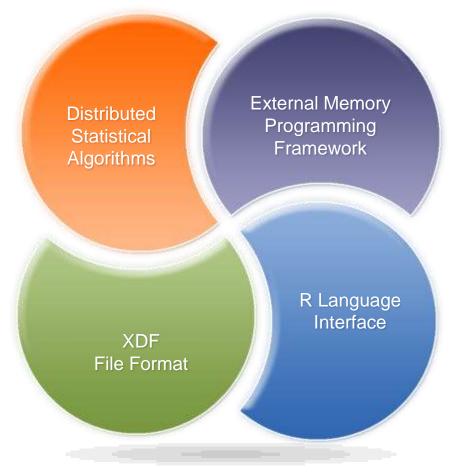
Statistical Modeling

- All standard statistical methods built in
 - Mean, median, covariance, distributions, …
 - Regression, ANOVA, cross-tabulations, …
 - Survival, nonlinear mixed effects, GLM, …
 - Neural networks, trees, GAM, …
- Object-oriented functions
 - Access all parts of the analysis results
 - Combine analytic methods

Cutting-edge analytics

- Really good domain-specific suites for R:
 - Genomics: <u>BioConductor</u>
 - Portfolio Optimization: <u>Rmetrics</u>
- Thousands of add-on packages:
 - CRAN: cran.r-project.org
 - Task Views
 - Machine learning, natural language processing, PK/PD, HPC, Econometrics, Environmetrics, …

Revolution Confidential


HIGH PERFORMANCE ANALYTICS, BIG DATA AND HPC CLUSTERS

RevoScaleR: Big Data Analysis for Revolution R Enterprise

Addresses performance by distributing computations between cores and computers

A novel highspeed file format designed specifically to support statistical analyses

Addresses capacity through a collection of functions for chunking through massive data files

> Familiar, highprodictivity programming paradigm for R users

Getting Started with Big Data

- When we talk with people about their "big data", almost always the first issue they raise is "hardware". "What kind of hardware do I need to analyze big data."
- My answer, "Get started today with the hardware you have. With Revolution R Enterprise, you can quickly begin doing scalable data analysis on your desktop while you are determining your longer term hardware requirements."

Big Data on Your Desktop

- Data sets with many variables and 100-million observations can be easily processed on a desktop using RevoScaleR functions.
- Using Revolution R Enterprise, you can <u>avoid</u> <u>getting locked into memory-bound analyses</u>. By processing data a chunk at a time, increasing the number of observations in your data set doesn't increase the memory requirements for a given analysis.
- There is no need to pay for \$500K 1TB RAM servers!!!!!

Estimating a Big Logistic Model

 A challenging model: a logistic regression with over 50 parameters (categorical data for Dad and Mom's ages, race, Hispanic ethnicity, live birth order, plurality, gestation, and year)

ItsaBoy ~ DadAgeR8 + MomAgeR7 +

FRACEREC + FHISP_REC +

MRACEREC + MHISP_REC +

LBO4 + DPLURAL_REC + Gestation +

F(DOB_YY)

Big Logistic Model on the Desktop

Even a large logistic regression (over 50 parameters) with almost 100 million rows of data can be estimated on a desktop, in about the time it takes to get a cup of coffee (about 6 minutes)

```
Revolution R Enterprise Console
> system.time(
+ logitObj <- rxLogit(ItsaBoy ~ DadAgeR8 + MomAgeR7 + FRACEREC + FHISP_REC +
+ MRACEREC + MHISP_REC + LBO4 + DPLURAL_REC + Gestation + F(DOB_YY) ,
+ data=birthAll, dropFirst=TRUE, blocksPerRead = 10, reportProgress = 0 ))
user system elapsed
960.53 57.46 356.77
>
```

But what if that's not fast enough?

"I need to be ready for tomorrow's data." Scaling data analysis to a cluster.

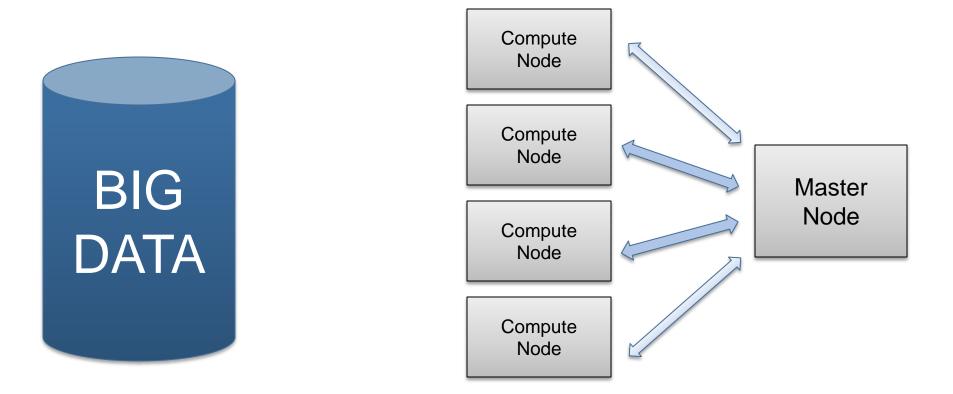
The Birth Data Logistic Regression on a Cluster

- In our office we have a 5-node cluster of commodity hardware (about \$5,000) running Windows HPC Server
- I just set my compute context to use the cluster (and wait for the results) and set the location of the data on the nodes
- Then run the same code

```
Revolution R Enterprise Console
> rxOptions(computeContext = myWaitCluster)
> birthAll <- "C://data//CDC-birth//BirthUS.xdf"
> system.time(
+ logitObj <- rxLogit(ItsaBoy~ DadAgeR8 + MomAgeR7 + FRACEREC + FHISP_REC +
+ MRACEREC + MHISP_REC + LBO4 + DPLURAL REC + Gestation + F(DOB_YY) ,
+ data=birthAll, dropFirst=TRUE, DlocksPerRead = 10, reportProgress = 0 ))
user system elapsed
0.59 0.00 41.61</pre>
```

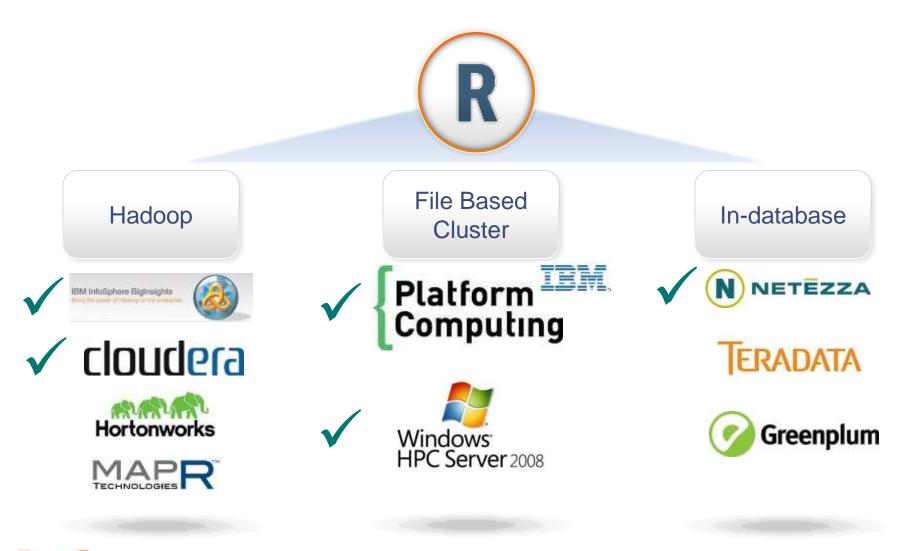
HPA Jobs on a Windows HPC cluster

File View Actions	Options H	elp					
Back 🔘 Forward Na	avigation Pane	Actions Filt	er: Owner	 Submit time 	 Project name 	- 🍸 Search: Job name	Q ≫ o
Job Management	My Jobs	(102)					
🖃 All Jobs	Job ID	Job Name	State	Owner	Progress	Submit Time	Requested Resources
Configuring Active Finished	59813 59808	RevoScaleRJob RevoScaleRJob	Finished Finished	REVOLUTION2\sue REVOLUTION2\sue	100%	11/15/2011 4:12:17 PM 11/15/2011 9:56:34 AM	5-5 Nodes 5-5 Nodes
Failed Canceled ⊂ My Jobs Configuring Active Finished Failed Canceled By Job Template Default AllensTemplate	Task J 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20	11 4:12:17 PM Started 11 4:12:17 PM Started 11 4:12:17 PM Started 11 4:12:17 PM Started 11 4:12:54 PM Ended 11 4:12:54 PM Ended 11 4:12:54 PM Ended	g d by REVOLUTIC ted on CLUSTER-H on COMPUTE1 on COMPUTE1 on COMPUTE1 on CLUSTER-HI on COMPUTE10 on COMPUTE12 on COMPUTE12 on COMPUTE13 on COMPUTE13	EAD2 with 4 cores 0 with 4 cores 2 with 4 cores 3 with 4 cores 1 with 4 cores EAD2	I can see that my computations wer 4 cores on each c	re processed	

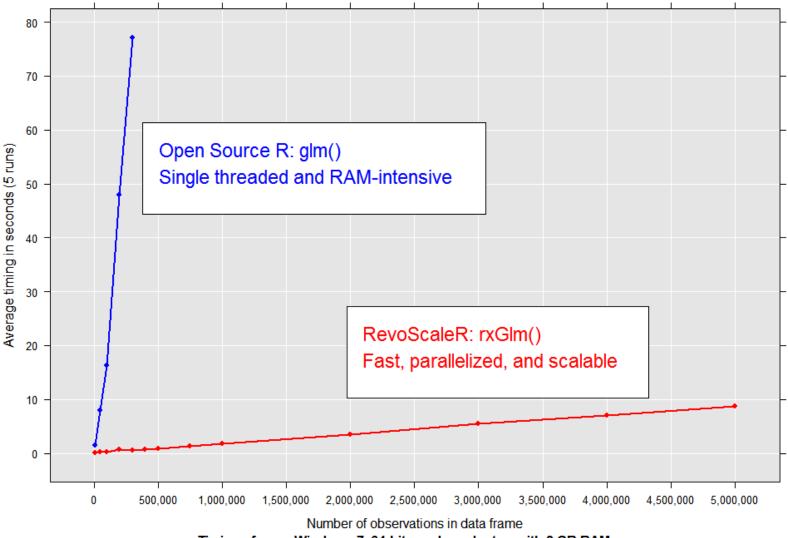

HPA Benchmarking comparison* – Logistic Regression

	Competitor	REVOLUTION ANALYTICS
Rows of data	1 billion	1 billion
Parameters	"just a few"	7
Time	80 seconds	44 seconds
Data location	In memory	On disk
Nodes	32	5
Cores	384	20
RAM	1,536 GB	80 GB

Revolution R is faster on the same amount of data, despite using approximately a 20th as many cores, a 20th as much RAM, a 6th as many nodes, and not preloading data into RAM.


RevoScaleR Big Data Analytics Servers & Distributed Clusters

 Data Step, Statistical Summary, Tables/Cubes, Covariance, Linear & Logistic Regression, GLM, K-means clustering, ...



Common Analytic Platform across Big Data Architectures

Hadoop in Taiwan 2012

GLM 'Gamma' Simulation Timings Independent Variables: 2 factors (100 and 20 levels) and one continuous

Timings from a Windows 7, 64-bit quadcore laptop with 8 GB RAM

Hadoop in Taiwan 2012

Paradigms for Statistical Analysis – High Performance Computing (HPC)

(embarrassingly parallel)

- The purpose of HPC-type analytics is to generate many "answers" that are independent from one another.
 - Parallel independent execution of an R function across cores and nodes
 - Usually involve small amounts of data (such as an individual's credit history within a very large aggregate amount of data for an entire population)
 - Some Examples:
 - Scoring
 - Simulations (Monte Carlo)
 - Binning of data for visualizations

Paradigms for Statistical Analysis – High Performance Analytics (HPA)

(tightly coupled)

- The purpose of HPA-type analytics is to generate a single "answer"
 - There is more data than fits into memory and the model requires that you use all the data to get the answer
 - The calculation is broken into small interim steps whose results are assembled into a final result
 - Algorithms are parallelized to execute across cores and nodes (Parallelized External Memory Algorithms)
 - Executions are dependent of each other
 - Some Examples:
 - Linear regression
 - Logistic regression
 - Kmeans Clustering

RevoScaleR: Big-Data Algorithms

Big-Data Algorithm	Example Applications	REVOLUTION ANALYTICS
Data Step	ETL, data distillation, record/variable selection, variable transformation	<i>s s</i>
Descriptive Statistics	Exploratory Data Analysis, Data Validation	<i>√ √</i>
Tables & Cubes	Reporting, contingency analysis	<i>s s</i>
Correlation / Covariance	Factor Analysis, Value at Risk	<i>J J</i>
Linear regression	Forecasting, Net present value estimation	<i>s s</i>
Logistic Regression	Response modeling, offer selection	<i>√ √</i>
Generalized Linear Models	Capital reserve estimation, climate modeling	<i>J J</i>
K-means clustering	Customer Segmentation	<i>√ √</i>
Model Prediction	Real-time Scoring (decisions, offers, actions)	<i>√ √</i>
Parallel & distributed computing with R	Simulations, By-Group analysis, ensemble models, custom applications	<i>s s</i>

Revolution Analytics Distributed Computing Implementations

- For HPC-Type on:
 - Linux/MS HPC Clusters RevoScaleR, using rxExec
 - IBM Netezza, using nzApply and nzTApply (nzr package)
 - Hadoop mapreduce in rmr package using only a map function
- For HPA-Type on:
 - Linux/MS HPC Clusters RevoScaleR, using rxLinMod, rxLogit, rxCube...
 - IBM Netezza, using nzLm, nzKMeans... (nza package)
 - Hadoop mapreduce in rmr package. Requires custom R scripting.

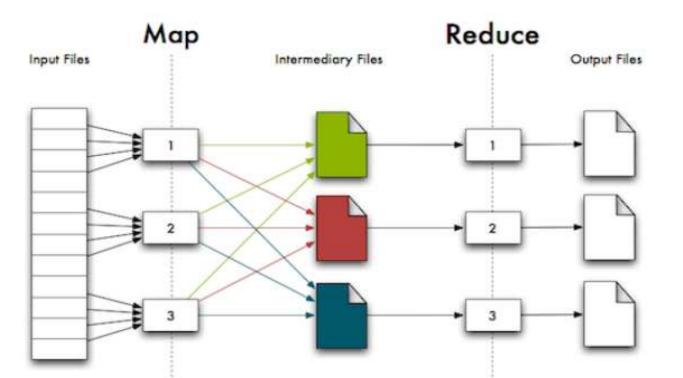
Revolution Confidential

R AND HADOOP

Hadoop

Apache Hadoop is an open source platform for data storage and processing that is...

- ✓ Scalable
- Fault tolerant
- Distributed


CORE HADOOP SYSTEM COMPONENTS

Provides storage and computation in a single, scalable system.

Mapreduce

- · MapReduce distributes jobs across nodes of the Hadoop cluster
- The Map function operates on a block of data and produces intermediate output
- The Reduce function takes the intermediate output and aggregates it into a final set of results.
- MapReduce jobs can be written in R, Pig, Java, Python and other languages

R and Hadoop

- Hadoop offers a scalable infrastructure for processing massive amounts of data
 - Storage HDFS, HBASE
 - Distributed Computing MapReduce
- R is a statistical programming language for developing advanced analytic applications
- Currently, writing analytics for Hadoop requires a combination of Java, pig, Python, ...
- The Rhadoop project makes it possible to write Big Data algorithms for Hadoop using the R language alone.

Motivations for Rhadoop Project

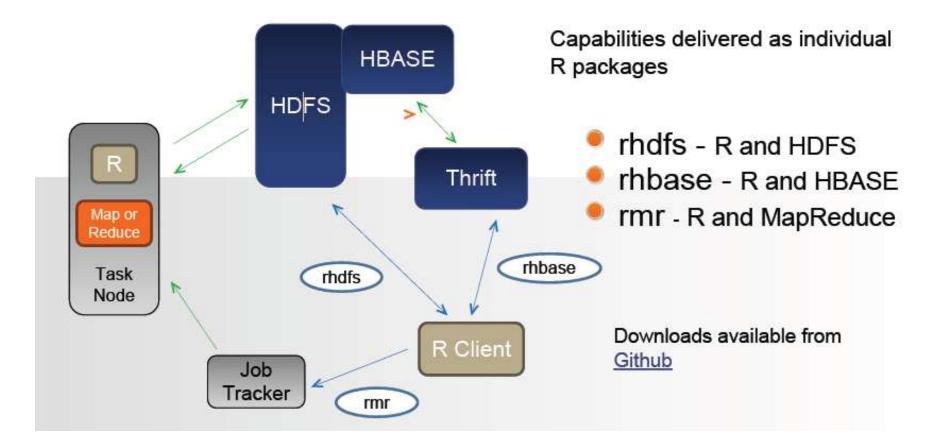
- Make it easy for the R programmer to interact with the Hadoop data stores and write MapReduce programs
- Ability to run R on a massively distributed system without having to understand the underlying infrastructure
- Keep statisticians focused on the analysis and not the implementation details
- Open source to drive innovation and collaboration.

A Growing Market with Affinity for R

- IDC estimates Hadoop software market to reach \$812M by 2016
- Lots of experimentation being led by IT
- Hadoop is particularly well-suited for unstructured data; the fastest-growing type
- R was an early player in the Hadoop ecosystem
- Hadoop is a catalyst for analytics platform re-engineering
 - driving R use even in established SAS shops

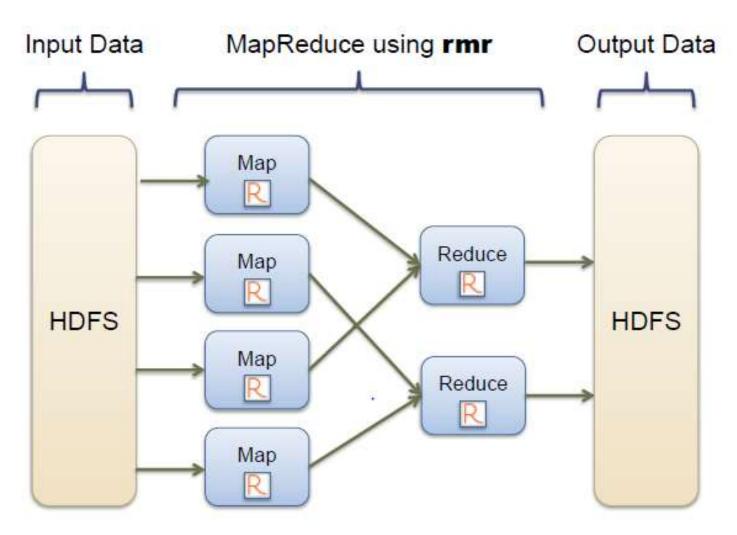
Revolution Confidential

REVOLUTION ANALYTICS HADOOP CAPABILITIES



Rhadoop Project

- Revolution Analytics conceived, engineered and built the packages in the RHadoop Project
- New releases available approximately every quarter
- RHadoop Project consists of 3 R packages
 - rhdfs connector from R to HDFS (read/write)
 - rhbase— connector from R to HBASE (read/write)
 - rmr– execute MapReduce jobs written 100% in R



R and Hadoop – The R Packages

RHadoop – MapReduce Using rmr

When Working with Hadoop, Both Steps of Data Analysis Can Use MapReduce with rmr

- Data Distillation/ Data Step
 - rmr can be used within Hadoop to extract meaning from unstructured data
 - Create new variables such as counts (e.g. number of clicks in a day)
 - sort (e.g. according to criteria or sentiment)
 - merge
 - These sorts, merges, new variables, etc. can either be used within Hadoop for analytics or can be pulled into Revolution R Enterprise for statistical analysis
- Statistical Analysis within Hadoop
 - HPC-type analytics can be executed using rmr and R functions
 - HPA-type analytics can be executed using rmr via custom R scripting.
 - A library of RevoScaleR HPA routines for Hadoop is coming

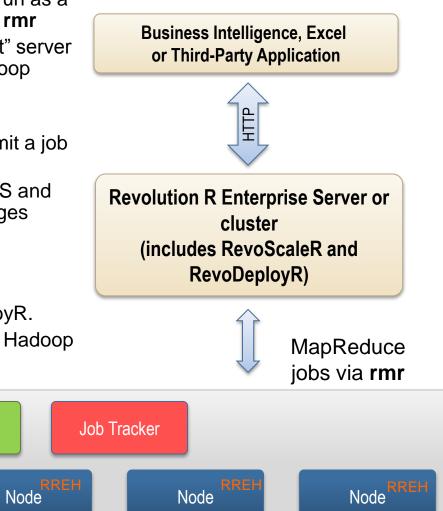
Two Basic Deployment Models

- Option 1 rmr in use. Revolution R Enterprise next-to and Revolution R for for Hadoop installed Inside Hadoop to provide both:
 - rmr-enabled statistical analytics within Hadoop
 - rmr-enabled data distillation within Hadoop for statistical analyses inside or next to Hadoop
- Option 2 rmr not in use. Revolution R Enterprise installed next-to Hadoop to provide:
 - rhdfs- and rhbase-based access to Hadoop as a data source for HPA
 - statistical analysis done in Revolution R Enterprise on one or more edge nodes.

Option 1 : rmr in use

- Data distillation or Statistical Analysis are run as a MapReduce job in the Hadoop Cluster via rmr
- Standalone Revolution R Enterprise "client" server (or cluster) is physically connected to Hadoop cluster and is used to:
 - Kick off MapReduce jobs using rmr
 - Access Hadoop jar files (i.e. can submit a job to the job tracker)
 - Connect to Hadoop data stores (HDFS and HBASE) using rhdfs or rhbase packages
 - Build and test models

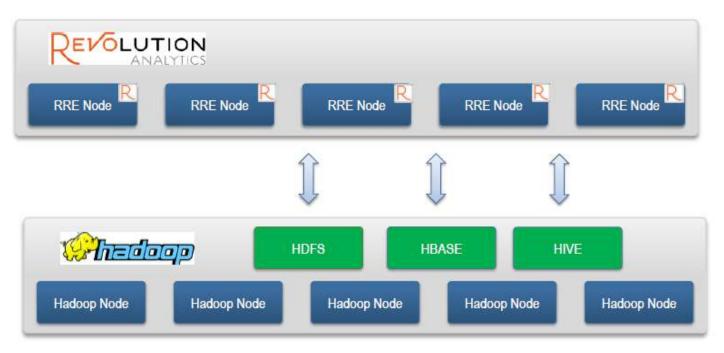
hadoop


Node

- Collect results for further processing, visualization
- Propagate results through RevoDeplovR.
- **RREH** Is Revolution R Enterprise for Hadoop

Node

Name Node


Hadoop in Taiwan 2012

Node

Option 2 – no rmr in use

- Hadoop data accessed from RRE using rhbase, rhdfs, RODBC. We assume that rmr has not been used to distill / prepare the data
- Statistical analytics processing is on separate server or shared cluster using Revolution R Enterprise

rhdfs

- Manipulate HDFS directly from R
- Mimic as much of the HDFS Java API as possible
- Examples:
 - Read a HDFS text file into a data frame.
 - Serialize/Deserialize a model to HDFS
 - Write an HDFS file to local storage
 - rhdfs/pkg/inst/unitTests rhdfs/pkg/inst/examples

rhdfs Functions

File Manipulations

hdfs.copy, hdfs.move, hdfs.rename, hdfs.delete, hdfs.rm, hdfs.del, hdfs.chown, hdfs.put, hdfs.get

File Read/Write

hdfs.file, hdfs.write, hdfs.close, hdfs.flush, hdfs.read, hdfs.seek, hdfs.tell, hdfs.line.reader, hdfs.read.text.file

Directory

- hdfs.dircreate, hdfs.mkdir
- Utility
 - hdfs.ls, hdfs.list.files, hdfs.file.info, hdfs.exists
- Initialization
 - hdfs.init, hdfs.defaults

rhbase

- Manipulate HBASE tables and their content
- Uses Thrift C++ API as the mechanism to communicate to HBASE
- Examples
 - Create a data frame from a collection of rows and columns in an HBASE table
 - Update an HBASE table with values from a data frame
 - rhbase/pkg/inst/unitTests

Rhbase Functions

Table Manipulation

hb.new.table, hb.delete.table, hb.describe.table, hb.set.table.mode, hb.regions.table

Row Read/Write

hb.insert, hb.get, hb.delete, hb.insert.data.frame, hb.get.data.frame, hb.scan

Utility

hb.list.tables

Initialization

hb.defaults, hb.init

rmr

- Designed to be the simplest and most elegant way to write MapReduce programs
- Gives the R programmer the tools necessary to perform data analysis in a way that is "R" like
- Provides an abstraction layer to hide the implementation details
- Examples
 - Simulations Monte Carlo and other Stochastic analysis
 - R 'apply' family of operations (tapply, lapply...)
 - Binning, quantiles, summaries, crosstabs and inputs to visualization (ggplot, lattice).
 - Machine Learning
 - rmr/pkg/inst/tests

rmr mapreduce Function

- mapreduce (input, output, map, reduce, ...)
 - input input folder
 - output output folder
 - map R function used as map
 - reduce R function used as reduce
 - ... other advanced parameters

Revolution Confidential

RHADOOP – THE BASICS

Hadoop in Taiwan 2012

Simple Example

small.ints <- 1:10
out <- lapply(small.ints, function(x) x^2)</pre>

Binomial Example

Groups <- rbinom(32, n = 50, prob = 0.4) out <- tapply(groups, groups, length)

groups <- to.dfs(groups)
out <- mapreduce(input = groups,
 map = function(k, v) keyval(v, 1),
 reduce = function(k,vv) keyval(k, length(vv)))</pre>

Wordcount

```
wordcount <- function(input, output = NULL, pattern = "")
{
   mapreduce(input = input, output = output,
    input.format = "text",
    map = function(k,v)
    {
        lapply( strsplit( x = v,
             split = pattern)[[1]],
             function(w) keyval(w,1))
    },
    reduce = function(k,vv)
        keyval(k, sum(unlist(vv)))
    , combine = T)
}
```

Logistic Regression

logistic.regression <- function(input, iterations, dims, alpha)

```
plane <- rep(0, dims)
g \ll function(z) 1/(1 + exp(-z))
for (i in 1:iterations)
ł
    gradient <- from.dfs(mapreduce(input,
        map = function(k, v) keyval (1, v * v * q-
            v$y * (plane %*% v$x))),
        reduce = function(k, vv) keyval(k,
            apply(do.call(rbind,vv),2,sum)),
        combine = T)) plane = plane + alpha *
            gradient[[1]]$val
plane
```

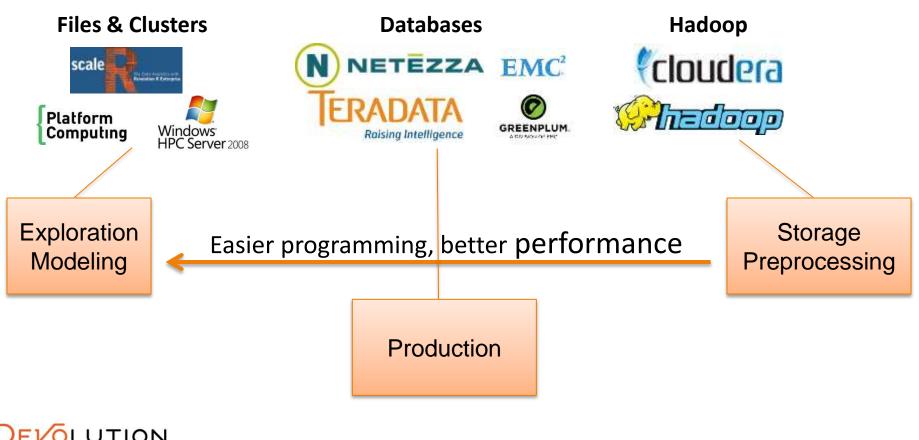
Hadoop in Taiwan 2012

K-means

```
kmeans <-
   function(points, ncenters, iterations = 10,
       distfun = function(a,b) norm(as.matrix(a-b), type='F'))
           newCenters <- kmeans.iter(points, distfun = distfun,
                   ncenters = ncenters)
           for(i in 1:iterations)
               newCenters <- lapply(values(newCenters), unlist)
               newCenters <- kmeans.iter(points, distfun, centers)
                  = newCenters)
       newCenters
```


K-means

```
kmeans.iter <-
    function(points, distfun, ncenters = length(centers), centers = NULL)
        from.dfs(
            mapreduce(input = points, map = if (is.null(centers)) {
                 function(k, v) keyval(sample(1:ncenters, 1), v)
            } else {
                function(k, v) {
                 distances <- lapply(centers, function(c) distfun(c, v))
                 keyval(centers[[which.min(distances)]], v)
    reduce = function(k, vv) keyval(NULL, apply(do.call(rbind, vv),
            2,mean))))
```


Is Hadoop 2.0/ARN the right platform for you?

- In terms of YARN, the OMPI-based "HOD" solution launches an MPI program about 1000x faster, and runs about 10x faster. The launch time differences grows with scale as the YARN MPI solution wires up with a quadratic time signature, while the OMPI solution wires up logarithmically.
- The execution time difference depends upon the application (IO bound vs compute bound), but largely stems from a difference in available data transports.
- As a practical example, running a simple MPI "ring" program takes about 90 seconds on an 8 node system using YARN, and about 35 milliseconds using OMPI under SLURM.
- An MR word count program that looked at 1000 files took about 6 minutes using YARN, and about 11 seconds using OMPI's MR+.
- Non-MPI programs also tend to launch faster due to the difference in how YARN handles launch vs other RMs.
- Again, a non-MPI "hello" running on an 8 node system can still take 20 seconds to run, depending on the heartbeat setting, and about 25 milliseconds using SLURM.

Future: Diverging data paradigms

More data, better fault tolerance

Final thoughts on RHadoop

- R and Hadoop together offer innovation and flexibility needed to meet analytics challenges of big data
- Connects the R Programmer and the Hadoop Expert
- We need contributors to this project!
 - Developers
 - Documentation
 - Use cases
 - General Feedback